Network Synthesis of Linear Dynamical Quantum Stochastic Systems
نویسندگان
چکیده
منابع مشابه
Network Synthesis of Linear Dynamical Quantum Stochastic Systems
The purpose of this paper is to develop a synthesis theory for linear dynamical quantum stochastic systems that are encountered in linear quantum optics and in phenomenological models of linear quantum circuits. In particular, such a theory will enable the systematic realization of coherent/fully quantum linear stochastic controllers for quantum control, amongst other potential applications. We...
متن کاملLinear Stochastic Models of Nonlinear Dynamical Systems
We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We exploit as our basic tool a previously proposed Rayleigh-Ritz approximation for the effective action of nonlinear dynamical systems started from random initial conditions. The present paper discusses only the case where the PDF-Ansatz employed in the variational calculation is “Markovian”, i...
متن کاملQuantum Dynamical Entropies for Classical Stochastic Systems
We compare two proposals for the dynamical entropy of quantum deterministic systems (CNT and AFL) by studying their extensions to classical stochastic systems. We show that the natural measurement procedure leads to a simple explicit expression for the stochastic dynamical entropy with a clear informationtheoretical interpretation. Finally, we compare our construction with other recent proposals.
متن کامل∞ Control of Linear Quantum Stochastic Systems
The purpose of this paper is to formulate and solve a H∞ controller synthesis problem for a class of non-commutative linear stochastic systems which includes many examples of interest in quantum technology. The paper includes results on the class of such systems for which the quantum commutation relations are preserved (such a requirement must be satisfied in a physical quantum system). A quant...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Control and Optimization
سال: 2009
ISSN: 0363-0129,1095-7138
DOI: 10.1137/080728652